
System administration
Packages and probes

Douglas Temple
duggles@netsoc.tcd.ie

For
DU Internet Society [Netsoc]

5th December, 2016

e



Tonight’s outline

Package managers for RHEL/Debian

What to do with multiple versions/types of software

Building stuff yourself

Local query and monitoring tools



Package management

Problem: Software compilation/installation/configuration is hard

Solution: Get precompiled binaries and stock configs from distro!

Packages are compressed archives with some extra scripting

Signed by package maintainers for security

Different distros have different behaviours

We focus on RPM- and DEB-based packages (RIP Arch)

There are high-level package managers, and low-level package
manipulators (my words)

High-level:
▶ aptitude, apt-get, apt (new!) - DEB
▶ yum, dnf (new!) - RPM

Low-level:
▶ dpkg - DEB
▶ rpm - RPM



High-level package management

Update package list
apt-get update yum check-update

Update system
apt-get upgrade yum update

List repositories
cat /etc/apt/sources.list yum repolist

Add repository
edit /etc/apt/sources.list add to /etc/yum.repos.d/

Remove repository
edit /etc/apt/sources.list remove from /etc/yum.repos.d/

Search by package name
apt-cache search pkg-name yum list pkg-name

Search by pattern
apt-cache search pattern yum search pattern

Search by file name
apt-file search path yum provides file



High-level package management

Show package information
apt-cache show pkg-name yum info pkg-name

Install from repository
apt-get install pkg-name yum install pkg-name

Update package
apt-get install pkg-name yum update pkg-name

Remove package
apt-get remove pkg-name yum erase pkg-name

Install from package file
dpkg -i pkg-name yum localinstall pkg-name

Purge package
apt-get purge pkg-name yum erase pkg-name



Low-level package manipulation

Install package
dpkg -i pkg-name rpm -i pkg-name

Uninstall package
dpkg -r pkg-name rpm -e pkg-name

Show package description
dpkg -i pkg-name rpm -qi pkg-name

List installed packages
dpkg -l -a rpm -qa

Find package containing file
dpkg -S file rpm -qf file

List files in package
dpkg -L pkg-name rpm -ql pkg-name



Misc. package stuff

Cracking open packages

rpm2cpio rpmfile | cpio -idmv

dpkg-deb -x debfile

Alternative: ar -vx debfile; tar -xzvf data.tar.gz
▶ Also get control.tar.gz and debian-binary

Reconfiguring packages

dpkg-reconfigure package-name

Not in rpm :(



Some fiddling with package configuration

Diversions

Sometimes package updates break things

Commonly caused by replacing config files

Can avoid this by diverting package

dpkg-divert --add /some/file --rename /some/where/else

Multiple architectures

Sometimes you want multiple architectures (e.g. i386 on x86 64)

dpkg --add-architecture=i386 does just that

apt install libfoo:i386 will install the i386 version

Might require special packages for certain things
▶ lib32stdc++6 libc6-i386
▶ gcc-6-multilib



Multiple versions of same software

Some solutions

Name things differently (python3, python2.7, etc.)

Choose one for your users
▶ update-alternatives --config java

Use environment modules



Environement modules

Simple environment manipulation (modifies PATH, INCLUDE PATH,
etc.)

Couples into your shell and uses simple TCL for description of
dependencies



Sample environement module file

%Module1.0

module-whatis "GCC environment for 5.2"

prepend-path PATH /usr/support/modules/gnu-5.2/bin

prepend-path MANPATH /usr/support/modules/gnu-5.2/share/man

prepend-path INFOPATH /usr/support/modules/gnu-5.2/share/info

proc ModulesHelp { } {

puts stderr "gcc 5.2 environment"

puts stderr "\n"

puts stderr "configured with: ACML, FFTW3, ATLAS, ScaLAPACK, libint, libunwind, OpenMPI"

}

prepend-path LD_LIBRARY_PATH /usr/support/modules/gnu-5.2/lib

prepend-path LD_LIBRARY_PATH /usr/support/modules/gnu-5.2/lib64

prepend-path LD_RUN_PATH /usr/support/modules/gnu-5.2/lib

prepend-path LIBRARY_PATH /usr/support/modules/gnu-5.2/lib

prepend-path LIBRARY_PATH /usr/support/modules/gnu-5.2/lib64

prepend-path LD_RUN_PATH /usr/support/modules/gnu-5.2/lib

prepend-path LD_RUN_PATH /usr/support/modules/gnu-5.2/lib64

prepend-path INCLUDE_PATH /usr/support/modules/gnu-5.2/include

prepend-path INCLUDE /usr/support/modules/gnu-5.2/include

prepend-path CPLUS_INCLUDE_PATH /usr/support/modules/gnu-5.2/include

prepend-path C_INCLUDE_PATH /usr/support/modules/gnu-5.2/include



Building it yourself

Huge amount of established software is written using autotools

A convention has been to have an INSTALL text file as a readme

Most autotools programs can be built with the command:
./configure && make && make install

configure is the autotools setup which queries your system and
generates the final makefile

Compilation can be sped up (some times) by doing make -j N, N
being related to the number of cores

The standard make install will install the compiled binaries (and
other things) into the standard hierarchy below some prefix

▶ Default is usually something like /usr so you need root privileges
▶ Alternatively you can do something like ./configure

--prefix=/home/myuser/.localinstall



More

Autotools is a pain to develop with

CMake is somewhat more pleasant

It essentially replaces ./configure



Monitoring

Comes in two flavours:
▶ Active
▶ Passive

When developing code it can be useful to actively monitor machine
state

strace - system call trace

ltrace - library call trace

systemtap - Hugh-Mungus system profiler

perf - Very low-level performance metrics



perf example

sudo perf stat -B dd if=/dev/zero of=/dev/null count=1000000

1000000+0 records in

1000000+0 records out

512000000 bytes (512 MB, 488 MiB) copied, 0.227182 s, 2.3 GB/s

Performance counter stats for ’dd if=/dev/zero of=/dev/null count=1000000’:

228.205614 task-clock (msec) # 0.988 CPUs utilized

1 context-switches # 0.004 K/sec

0 cpu-migrations # 0.000 K/sec

69 page-faults # 0.302 K/sec

716,225,259 cycles # 3.139 GHz

1,448,054,958 instructions # 2.02 insn per cycle

302,209,028 branches # 1324.284 M/sec

1,009,682 branch-misses # 0.33% of all branches

0.231090674 seconds time elapsed



Computer montoring tools

Processes: htop, top, ps, uptime

RAM: free, vmstat, slabtop

I/O: iostat, vmstat, iotop

Network: netstat, ss, nicstat, iftop, bmon, ethtool

Disk: du, df



Process states

R Run state: The process is currently running on the CPU

S Sleep state: The process is not doing anything

D Uninterruptible sleep: The process is waiting for I/O to
continue running

Z Zombie state: The processes’s parent has not reaped its
child (typically bad)

T Stopped state: The process has been paused by a signal or
trace



Process commands

Command Result
ps Shows processes running in that shell
ps aux Show processes of all users, and those not on a terminal
ps -eF As above, but using GNU’s syntax
ps axuf As above, but show the process tree
pstree Different way to view the process tree
pgrep name Search for process containing name, return PIDs
top Process manager (‘q’ to exit)
free [-m] View free memory (-m in MB)
uptime Show uptime and load

Load is average CPU utilization in 1, 5, and 15 minute intervals

There is a load of 1 for each process waiting on I/O or in the run state

~:$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 21444 1212 ? Ss Jul11 0:01 /sbin/init



Totally stolen



Passive monitoring tools

Munin - 5 minute averages of many different metrics (doesn’t scale
fantastically)

Nagios + NRPE - Easy polling of certain system metrics (+alerts)

Ganglia - Highly distributed monitoring solution


